The messenger RNA decapping and recapping pathway in Trypanosoma.
نویسندگان
چکیده
The 5' terminus of trypanosome mRNA is protected by a hypermethylated cap 4 derived from spliced leader (SL) RNA. Trypanosoma brucei nuclear capping enzyme with cap guanylyltransferase and methyltransferase activities (TbCgm1) modifies the 5'-diphosphate RNA (ppRNA) end to generate an m7G SL RNA cap. Here we show that T. brucei cytoplasmic capping enzyme (TbCe1) is a bifunctional 5'-RNA kinase and guanylyltransferase that transfers a γ-phosphate from ATP to pRNA to form ppRNA, which is then capped by transfer of GMP from GTP to the RNA β-phosphate. A Walker A-box motif in the N-terminal domain is essential for the RNA kinase activity and is targeted preferentially to a SL RNA sequence with a 5'-terminal methylated nucleoside. Silencing of TbCe1 leads to accumulation of uncapped mRNAs, consistent with selective capping of mRNA that has undergone trans-splicing and decapping. We identify T. brucei mRNA decapping enzyme (TbDcp2) that cleaves m7GDP from capped RNA to generate pRNA, a substrate for TbCe1. TbDcp2 can also remove GDP from unmethylated capped RNA but is less active at a mature cap 4 end and thus may function in RNA cap quality surveillance. Our results establish the enzymology and relevant protein catalysts of a cytoplasmic recapping pathway that has broad implications for the functional reactivation of processed mRNA ends.
منابع مشابه
Decapping and decay of messenger RNA occur in cytoplasmic processing bodies.
A major pathway of eukaryotic messenger RNA (mRNA) turnover begins with deadenylation, followed by decapping and 5' to 3' exonucleolytic decay. We provide evidence that mRNA decapping and 5' to 3' degradation occur in discrete cytoplasmic foci in yeast, which we call processing bodies (P bodies). First, proteins that activate or catalyze decapping are concentrated in P bodies. Second, inhibitin...
متن کاملmiRISC recruits decapping factors to miRNA targets to enhance their degradation
MicroRNA (miRNA)-induced silencing complexes (miRISCs) repress translation and promote degradation of miRNA targets. Target degradation occurs through the 5'-to-3' messenger RNA (mRNA) decay pathway, wherein, after shortening of the mRNA poly(A) tail, the removal of the 5' cap structure by decapping triggers irreversible decay of the mRNA body. Here, we demonstrate that miRISC enhances the asso...
متن کاملThe DEAD-Box Protein Dhh1 Promotes Decapping by Slowing Ribosome Movement
Translational control and messenger RNA (mRNA) decay represent important control points in the regulation of gene expression. In yeast, the major pathway for mRNA decay is initiated by deadenylation followed by decapping and 5'-3' exonucleolytic digestion of the mRNA. Proteins that activate decapping, such as the DEAD-box RNA helicase Dhh1, have been postulated to function by limiting translati...
متن کاملA quantitative assay for measuring mRNA decapping by splinted ligation reverse transcription polymerase chain reaction: qSL-RT-PCR.
The degradation of messenger RNA is a critical node of gene regulation. A major pathway of mRNA decay is initiated by shortening of the poly(A) tail, followed by removal of the 5' cap structure (decapping) and subsequent degradation. Decapping is an important determinate in the destruction of many transcripts. Detailed kinetic analysis of in vivo decapping rates is necessary to understand how t...
متن کاملTwo related proteins, Edc1p and Edc2p, stimulate mRNA decapping in Saccharomyces cerevisiae.
The major mRNA decay pathway in Saccharomyces cerevisiae occurs through deadenylation, decapping, and 5' to 3' degradation of the mRNA. Decapping is a critical control point in this decay pathway. Two proteins, Dcp1p and Dcp2p, are required for mRNA decapping in vivo and for the production of active decapping enzyme. To understand the relationship between Dcp1p and Dcp2p, a combination of both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 22 شماره
صفحات -
تاریخ انتشار 2015